1,081 research outputs found

    Neurotoxic Shellfish Poisoning

    Get PDF
    Neurotoxic shellfish poisoning (NSP) is caused by consumption of molluscan shellfish contaminated with brevetoxins primarily produced by the dinoflagellate, Karenia brevis. Blooms of K. brevis, called Florida red tide, occur frequently along the Gulf of Mexico. Many shellfish beds in the US (and other nations) are routinely monitored for presence of K. brevis and other brevetoxin-producing organisms. As a result, few NSP cases are reported annually from the US. However, infrequent larger outbreaks do occur. Cases are usually associated with recreationally-harvested shellfish collected during or post red tide blooms. Brevetoxins are neurotoxins which activate voltage-sensitive sodium channels causing sodium influx and nerve membrane depolarization. No fatalities have been reported, but hospitalizations occur. NSP involves a cluster of gastrointestinal and neurological symptoms: nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Neurological symptoms can progress to partial paralysis; respiratory distress has been recorded. Recent research has implicated new species of harmful algal bloom organisms which produce brevetoxins, identified additional marine species which accumulate brevetoxins, and has provided additional information on the toxicity and analysis of brevetoxins. A review of the known epidemiology and recommendations for improved NSP prevention are presented

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication

    Peroxisome Proliferator-Activated Receptors Alpha, Beta, and Gamma mRNA and Protein Expression in Human Fetal Tissues

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examines expression of PPARα, β, and γ mRNA and protein in human fetal tissues. With increasing fetal age, mRNA expression of PPARα and β increased in liver, but PPARβ decreased in heart and intestine, and PPARγ decreased in adrenal. Adult and fetal mean expression of PPARα, β, and γ mRNA did not differ in intestine, but expression was lower in fetal stomach and heart. PPARα and β mRNA in kidney and spleen, and PPARγ mRNA in lung and adrenal were lower in fetal versus adult. PPARγ in liver and PPARβ mRNA in thymus were higher in fetal versus adult. PPARα protein increased with fetal age in intestine and decreased in lung, kidney, and adrenal. PPARβ protein in adrenal and PPARγ in kidney decreased with fetal age. This study provides new information on expression of PPAR subtypes during human development and will be important in evaluating the potential for the developing human to respond to PPAR environmental or pharmaceutical agonists

    Effects of Exercise and Sertraline on Measures of Coronary Heart Disease Risk in Patients With Major Depression: Results From the SMILE-II Randomized Clinical Trial

    Get PDF
    To assess the effects of supervised and home-based aerobic exercise training, and antidepressant pharmacotherapy (sertraline) on coronary heart disease (CHD) risk factors in a sample of participants with major depressive disorder (MDD)

    Probing the structure and dynamics of molecular clusters using rotational wavepackets

    Full text link
    The chemical and physical properties of molecular clusters can heavily depend on their size, which makes them very attractive for the design of new materials with tailored properties. Deriving the structure and dynamics of clusters is therefore of major interest in science. Weakly bound clusters can be studied using conventional spectroscopic techniques, but the number of lines observed is often too small for a comprehensive structural analysis. Impulsive alignment generates rotational wavepackets, which provides simultaneous information on structure and dynamics, as has been demonstrated successfully for isolated molecules. Here, we apply this technique for the firsttime to clusters comprising of a molecule and a single helium atom. By forcing the population of high rotational levels in intense laser fields we demonstrate the generation of rich rotational line spectra for this system, establishing the highly delocalised structure and the coherence of rotational wavepacket propagation. Our findings enable studies of clusters of different sizes and complexity as well as incipient superfluidity effects using wavepacket methods.Comment: 5 pages, 6 figure

    Hachimoji DNA and RNA: A genetic system with eight building blocks

    Get PDF
    Reported here are DNA and RNA-like systems built from eight (hachi-) nucleotide letters (-moji) that form four orthogonal pairs. This synthetic genetic biopolymer meets the structural requirements needed to support Darwinism, including a polyelectrolyte backbone, predictable thermodynamic stability, and stereoregular building blocks that fit a Schrödinger aperiodic crystal. Measured thermodynamic parameters predict the stability of hachimoji duplexes, allowing hachimoji DNA to double the information density of natural terran DNA. Three crystal structures show that the synthetic building blocks do not perturb the aperiodic crystal seen in the DNA double helix. Hachimoji DNA was then transcribed to give hachimoji RNA in the form of a functioning fluorescent hachimoji aptamer. These results expand the scope of molecular structures that might support life, including life throughout the cosmos

    Effects of Starting Stance on Base Running Sprint Speed in Softball Players

    Get PDF
    International Journal of Exercise Science 11(6): 179-186, 2018. Speed is a crucial aspect in softball, and can be the difference between winning and losing. Base stealing is a method used to produce runs. There has been debate over which starting position is the most advantageous to maximize acceleration and speed to reach the next base the fastest. The purpose of this study was to examine the effect of different starting stances on acceleration and speed phases in collegiate softball players. Seventeen healthy NCAA Division I women’s softball players (age = 19.9 ± 1.3yrs, height = 167.0 ± 5.4cm, mass = 74.8 ± 14.1kg) volunteered to participate. Three maximum 45 ft sprints, with one minute rest, were performed (with splits at 15, 30 and 45ft) for each of three starting stances (front foot on the base, back foot on the base, and cross over stance). A 1x3 repeated measures ANOVA for total time demonstrated that front foot on the base was significantly faster (2.51 ± 0.18s) than back foot on the base (2.70 ± 0.19s) and the cross over step (2.66 ± 0.23s). For all three splits, front foot on the base was also significantly faster (0.96 ± 0.07s, 0.81 ± 0.06s, and 0.73 ± 0.06s) than back foot on the base (1.10 ± 0.13s, 0.84 ± 0.05s, and 0.75 ± 0.43s) and cross over step (1.04 ± 0.09s, 0.84 ± 0.06s, and 0.75 ± 0.07s). The decrease in time for front foot on the base was probably the result of using the base to push against, like a sprinter’s block, to produce greater horizontal force to accelerate faster and reach a greater top speed. Coaches should teach their softball athletes to stand with their front foot on the base when base running
    corecore